Методы экспертных оценок, область применения

Методы экспертных оценок в прогнозировании и перспективном планировании научно-технического прогресса применяются в следующих случаях:

а) в условиях отсутствия достаточно представительной и достоверной статистики характеристики объекта (например, лазеры, голографические запоминающие устройства, рациональное использование водных ресурсов на предприятиях);

б) в условиях большой неопределенности среды функционирования объекта (например, прогнозов человеко-машинной системы в космосе или учет взаимовлияния областей науки и техники);

в) при средне- и долгосрочном прогнозировании объектов новых отраслей промышленности, подверженных сильному влиянию новых открытий в фундаментальных науках (например, микробиологическая промышленность, квантовая электроника, атомное машиностроение);

г) в условиях дефицита времени или экстремальных ситуациях.

Экспертная оценка необходима, когда нет надлежащей теоретической основы развития объекта. Степень достоверности экспертизы устанавливается по абсолютной частоте, с которой оценка эксперта в конечном итоге подтверждается последующими событиями. Существует две категории экспертов - это узкие специалисты и специалисты широкого профиля, обеспечивающие формулирование крупных проблем и построение моделей. Выбор экспертов для прогноза производится на основе их репутации среди определенной категории специалистов. Однако не следует забывать и того обстоятельства, что первоклассный специалист не всегда может достаточно квалифицированно рассмотреть и понять общие, глобальные, вопросы. Для этой цели нужно привлекать экспертов хотя и недостаточно узко информированных, но обладающих способностью к дерзанию и воображению.

«Эксперт» в дословном переводе с латинского языка означает «опытный». Поэтому и в формализованном, и в неформализованном способах определения эксперта значительное место занимают профессиональный опыт и развитая на его основе интуиция. Условия необходимости и достаточности отнесения специалиста к категории экспертов вводятся следующим образом.

Важно установить не абсолютную степень надежности экспертной оценки, а степень надежности по сравнению с оценкой среднего специалиста, а также корреляцию между вероятностью его прогнозной оценки и надежностью класса тех гипотез, которыми оперирует эксперт.

Характеризуя экспертов, следует иметь в виду, что в результате выработки оценок могут иметь место ошибки двух видов. Ошибки первого вида известны в технике измерений как систематические, ошибки второго вида - как случайные. Эксперт, склонный к ошибкам первого вида, выдает значения, которые устойчиво отличаются от истинного в сторону увеличения или уменьшения. Полагают, что ошибки этого вида связаны со складом ума экспертов. Для коррекции систематических ошибок можно применять поправочные коэффициенты или же использовать специально разработанные тренировочные игры. Ошибки второго вида характеризуются величиной дисперсии. Исходя из анализа основных видов ошибок при вынесении экспертных суждений, можно добавить к рассмотренному ранее перечню требований к экспертам еще одно. Смысл его состоит в том, что следует предпочесть эксперта, оценки которого имеют малую дисперсию и систематическое отклонение средней ошибки от нуля, эксперту со средней ошибкой, равной нулю, но с большей дисперсией. К сожалению, априори определить способность человека делать правильные экспертные оценки невозможно. Важным средством подготовки экспертов являются специальные тренировочные игры.

Организация форм работы эксперта может быть программированной или не программированной, а деятельность эксперта может осуществляться в устной (интервью) либо в письменной форме (ответ на вопросы специальных таблиц экспертных оценок или свободное изложение по заданной теме).

Программирование формы работы эксперта предполагает:

построение граф-модели объекта на базе ретроспективного анализа; определение структуры таблиц экспертных оценок (ТЭО) или программы интервью на базе граф-модели объекта и целей экспертизы; определение типа и формы вопросов в ТЭО или в интервью;

Перейти на страницу: 1 2 3