Изучаем менеджмент
Решение:
| 5 | 3 | 6 | -8 | 7 | 4 | 
| 7 | 5 | 5 | -4 | 8 | 1 | 
| 1 | 3 | -1 | 10 | 0 | 2 | 
| 9 | -9 | 7 | 1 | 3 | -6 | 
А=
| S1 | S2 | S3 | S4 | S5 | S6 | |
| A1 | 5 | 3 | 6 | -8 | 7 | 4 | 
| A2 | 7 | 5 | 5 | -4 | 8 | 1 | 
| A3 | 1 | 3 | -1 | 10 | 0 | 2 | 
| A4 | 9 | -9 | 7 | 1 | 3 | -6 | 
1) Критерий Максимакса
 
 
Наилучшим решением будет А3,при котором максимальный выигрыш 10 ( =10)
=10) 
2) Критерий Вальда
В каждой строке находим минимальный элемент
Wi= minaij
W1= min {5;3;6;-8;7;4}= -82= min {7;5;5;-4;8;1}= -43= min {1;3;-1;10;0;2}= -14= min {9;-9;7;1;3;-6}= -9
Из полученных значений выбираем максимальное:
W= maxminaij= max {-8;-4;-1;-9)= -1, значит оптимальной по данному критерию является стратегия А3.
3) Критерий Сэвиджа.
Рассчитаем матрицу рисков
 
 
𝛽1=9; 𝛽2=5; 𝛽3=7; 𝛽4= 10; 𝛽5=8;𝛽6=4.
rij=𝛽I - aij
| r11= 9-5=4; r21= 9-7=2; r31=9-1=8; r41=9-9=0 | r12= 5-3=2; r22= 5-5=0; r32=5-3=2; r42=5-(-9)=14 | r13= 7-6=1; r23= 7-5=2; r31=7-(-1)=8; r41=7-7=0 | 
| r14= 10-(-8)=18; r24= 10-(-4)=14; r34=10-10=0; r44=10-1=9 | r15= 8-7=1; r25= 8-8=0; r35=8-0=8; r45=8-3=5 | r16= 4-4=0; r26= 4-1=3; r36=4-2=2; r46=4-(-6)=10 | 
Матрица рисков:
| R= | 4 | 2 | 1 | 18 | 1 | 0 | 
| 2 | 0 | 2 | 14 | 0 | 3 | |
| 8 | 2 | 8 | 0 | 8 | 2 | |
| 0 | 14 | 0 | 9 | 5 | 10 | 
Все права принадлежат - www.learnmanage.ru