Меню сайта


Хлорофилльный фотосинтез

Рис. 5. Хлорофилльный фотосинтез зеленых сер­ных (а) и пурпурных (б) бактерий: а - хлорофилл, связанный с особым белковым комплексом - фо­тосистемой 1 (ФС1), возбуждается квантом света и отдает электрон по цепи электронных перенос­чиков на НАД+. Восстанавливаясь, НАД* связыва­ет внутриклеточный ион НГ. Потеря электрона на хлорофилле компенсируется окислением серово­дорода до серы и иона ИГ снаружи бактериальной клетки. Движение Н+ внутрь клетки через ком­плекс F0 F1 дает АТФ; б - хлорофилл, связанный с белком фотосистемы 2 (ФС2), поглощает квант света и запускает циклический перенос электро­нов. В этом процессе участвуют переносчики элек­тронов ФС2 и дополнительного белкового ком­плекса III. Перенос электронов комплексом III со­пряжен с откачкой ионов Н+ из клетки. Откачанные ионы I-Г возвращаются через комплекс F0 F, с об­разованием АТФ

Следующим шагом в эволюции фотосинтеза стали, по-видимому, цианобактерии. Цепь перено­са электронов в этом случае представляет собой комбинацию: а) фотосистемы 1 зеленых бактерий, б) фотосистемы 2 и комплекса III пурпурных бакте­рий и в) дополнительного комплекса, расщепляю­щего воду на О2 и Н+ (рис. 6). Фактически донором электронов вместо сероводорода (встречающегося в достаточных количествах лишь в некоторых придан­ных нишах) служит вездесущая вода, запасы которой практически неограниченны. В результате конечный акцептор электоров — НАДФ+ восстанавливается, а вода окисляется. Образующийся НАДФН окисляется затем сложной системой восстановления угле­кислого газа до глюкозы. Таким образом, фотосин­тез цианобактерии параллельно с образованием АТФ дает углевод — одно из главных резервных ве­ществ современных живых клеток. Нет сомнений, что цианобактерия является эволюционным пред­шественником хлоропластов — органелл зеленых растений, энергетика которых устроена в основном по той же схеме, что показана на рис. 6.

Перейти на страницу: 1 2