Меню сайта


Фоторецепторы насекомых

Дихроизм рабдомеров следует также из опытов Джулио (Giulio, 1963), который освещал продольные срезы сложного глаза различных мух (Са1liphora erythrocephala, Calliphora vomitoria, Musca domestica) плоскополяризованным светом, падающим перпендикулярно оптическим осям омматидиев. При этом Джулио регистрировал суммарную электрорети-нограмму и получил ЭРГ различной амплитуды при различных положениях плоскости поляризации. Однако количественную оценку результатов его опытов дать трудно из-за недостаточного количества данных.

Интересное соответствие ультраструктурной организации рабдома с величиной электрического ответа клетки получил недавно Шоу (Shaw, 1967). Ему удалось ввести два микроэлектрода в различные ретинулярные клетки одной и той же ретинулы саранчи. При этом оказалось, что при вра­щении плоскости поляризации света максимальные ответы клеток сдви­нуты на 60° по отношению друг к другу. Это полностью соответствует электронномикроскопическим данным Хорриджа и Барнарда (Horridge a. Barnard, 1965), согласно которым микровиллы в рабдоме саранчи ориен­тированы по трем направлениям, углы между которыми составляют 120°.

Безусловно, дальнейшие опыты по изучению различения насекомыми (и вообще членистоногими) плоскости поляризации света имеют важное значение не только для изучения этого явления, интересного самого по себе, но и для понимания тех молекулярных механизмов, которые стоят у исто­ков возбуждения зрительной клетки вообще.

Рис. 7.Схема возникновения дихроизма при свертывании фоторецепторной мембраны в трубку микровиллы.

При хаотичной ориентации молекулы зрительного пигмента в плоскости фоторецепторной мембраны суммы проекций дипольных моментов молекул на оси координат bx и by равны и дихроизм отсутвует, т.е. дихроичное отношение равно 1. При свертывании мембраны в трубку компонент by остается прежним, а половина компонента (сумма вертикальных составляющих) не участвует в поглощении из-за перпендикулярности по отношению к электрическому вектору, т.е. дихроичное отношение равно 2.

Очень важно с этой точки зрения было бы знать, каким изменениям подвергается ультраструктура рабдома и самих ретинулярных клеток при воздействии света. Однако экспериментального материала в этом направлении получено пока еще мало. Так, Хорридж и Барнард (Horridge a. Barnard, 1965) показали, что после освещения ультраструктура рети­нулы саранчи претерпевает некоторые изменения («движение палисада»), хотя рабдом при этом не изменяется. Эгучи и Уотерман (Eguchi a. Water­man, 1967) показали, что при освещении в зрительных клетках глаза краба Libinia увеличивается число пластинчатых телец, усиливается процесс пиноцитоза в области клетки, прилежащей к рабдому, изменяется кон­фигурация мембран эндоплазматпческой сети, увеличивается количество рибосом, п т. д. Статистическая обработка большого числа электронномикроскопических фотографий позволила Эгучи и Уотерману выдвинуть надеж­ные критерии для обнаружения клеток, в неодинаковой степени адапти­рованных к свету. В частности, таким путем им удалось показать, что клетки с различно ориентированными микровиллами действительно нео­динаково возбуждаются поляризованным светом, что можно рассматри­вать как четкое подтверждение гипотезы Аутрума и Штумпфа (Autrum a. Stumpf, 1950). Наиболее важная структура зрительной клетки — рабдом— в процессе адаптации к свету не обнаружила никаких изменений. Однако, согласно данным, полученным в нашей лаборатории, при освещении слож­ного глаза рабочей пчелы в рабдоме могут все же наблюдаться существенные изменения, которые, как мы увидим ниже, дают возможность су­дить о работе ретинулярных клеток в достаточной степени опре­деленно.

Перейти на страницу: 3 4 5 6 7 8 9